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Abstract—-This effort is directed at developing a sensor
for evaluating water quality. It is based on electrochemical
techniques to detect and identify ions in solution. This
paper discusses the use of Cyclic Voltammetry (CV),
corrosion  measurements, and  Anodic  Stripping
Voltammetry (ASV) to measure four marker ions Cu, Ni,
Fe, and Zn using Electronic Tongue 1. Use of genetic
algorithms are suggested as an approach to facilitate the
search for optimum measurement conditions. In addition,
the possibility of changing the physical conditions of the
sample chamber is discussed as a way of increasing the
sensor’s apparent sensitivity and increasing confidence in
the measurement results.
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1. INTRODUCTION

This paper extensions the work reported at last years IEEE
Aerospace conference where the design principles were
discussed for the fabrication of Etngl (Electronic Tongue
No. 1) [Buehler, 2001]. In this effort the capabilities of
Etngl are explored using three sets of electrochemical
measurements  including Cyclic Voltammetry (CV)
[Kissinger, 1996], corrosion measurements [Stansbury,
2000], and Anodic Stripping Voltammetry (ASV) [Wang,
2000]. This effort is an outgrowth of the 25-cm’
electrochemical cell developed for the MECA (Mars
Environmental Compatibility Assessment) project [West,
1999] which included 20 prefabricated Ion Selective
Electrodes, a conductivity sensor, a temperature sensor and
a oxidation reduction potential sensor.
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This is a joint effort between JPL, Tufts University, and
Orion Research, Inc. Its goal is the development of a water
quality sensor for use on the International Space Station
Alpha and Martian Habitates. The target ions are K* (340
mg/L), Ca®* (30 mg/L), Mg** (50 mg/L) and CI" (200
mg/L) which represent some of the NASA Spacecraft
Maximum Contaminant Levels (MCL) for potable water
for International Space Station Alpha.

2. EXPERIMENTAL APPARATUS

The working electrodes (WE) and reference electrodes
(RE) used in this effort were fabricated on ceramic
substrates as seen in Fig. 1.

Fgure 1. op side of a 4.5-cm diameter ceramic substrate
showing the working (WE) and reference (RE) electrodes
arranged on a 3 X 3 array and a four-terminal thermometer.

The electrodes are arrayed in a 3 X 3 matrix with WE and
RE. The thermometer is formed by screen printing RuO,
and is used to monitor the temperature of the solution. The
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WE and RE Pd(12%)Ag(88%) electrodes were screened
printed onto the I-mm thick 96% pure alumina substrate
and fired in air at 840°C. The electrodes are accessed using
0.5-mm diameter pins mounted on the underside of the
substrate.

The substrate is mounted in the apparatus shown in Fig. 2a.
The top of the chamber contains an array of nine Auw/Ni
plated Cu auxiliary electrodes (AE) located above the WEs.
The distance between the WE and AE is about 2 mm. The
volume of the chamber is about 1.5 mL.

Figure 2a. Etngl expeﬁmental apparatus shO\i;ing the
sample chamber exposed and the nine AEs located in the
cap of the chamber.

%‘1gure 2b. Etngl shomg the eight-port manifold mounted
on the lower fluidics board.

A further view of the apparatus is seen in Fig. 2b that
shows the sample chamber mounted on an electronics
board which is mounted above a fluidics board that
includes an eight-port a manifold. Thus, eight reagents can
be introduced into the chamber either one at a time or in
mixtures by controlling the valves (not shown) above the
manifold.

The final view of the apparatus, shown in Fig. 2c, depicts
the miniature 50-yL pump. The pump is operated at 3 Hz
and so is capable of filling the 1.5 mL chamber in 10's.

Figure 2c. Eingl showing the 50-puL pump mounted on the
lower fluidics board.

3. ELECTRONICS

Various solutions were measured using the three-electrode
potentiostat shown in Fig. 3 [Kissinger, 1996]. The
electronics forces a voltage between the WE and RE to be
at voltage determined by DACO. This is achieved using the
operational amplifier U2 to force a current through AE so
that the commanded voltage between the WE and RE is
achieved. The current through the addressed cell is
determined from the voltage drop across RO. The main
current flow is indicated for Cell#2 by the red (heavy) line
in Fig. 3. The voltage between WE and RE is noted as
VWR and the voltage between the AE and RE is noted as
VAR.

4. EXPERIMENTAL RESULTS

The apparatus was exercised using four 0.1% by weight
salt solutions of CuSO4, NiSO4, Fe2S04, and ZnSO4.
Prior to exposure to these salts, the chamber was filled with
deionized water. During this exposure, water creates a thin
AgO, layer on the PdAg WE. The solutions were
characterized using CV measurements with a triangle wave
voltage with a slope of 0.1 V/s. One hundred stepped
voltages formed the triangle wave that varied from +1.0 V
to —~1.2 V and back to +1.0 V. Two cycles were measured
to demonstrate repeatability. Then fifty stepped ASV
measurements were taken after a deposition time of Tdep
with a slope of 0.1 V/s where the linear ramp was varied
from —1.2 V to +1.0 V. Again two traces were measured to
demonstrate repeatability.
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Figure 3. Etngl potentiostat circuitry. Resistor values are in ohms. ACH and DAC points go to NI DAQcard-1200.

The CV test results are shown in Fig.4. The open data (red
curve) are VWR results and the solid data (blue curve) are
VAR results. The CV curves provide insight into the nature
of the chemical and electrochemical process occurring in
the chamber [Kissinger, 1996]. During the negative going
sweep (left to right) species in solution are reduced. During
the positive going sweep (right to left) species in solution
are oxidized. Species identification, however, is determined
in subsequent analyses, in particular with ASV.

The CV data reported in Fig. 4 are replotted as Evans
curves in Fig. 5. The open data (red curves) are oxidation
results measured at the WE and the solid data (blue curve)
are reduction results measured at the AE. In the analysis of
this corrosion data the intersection of the two curves
defines the corrosion potential, Ecorr, and the corrosion
current, Icorr [Stansbury, 2000].

ASV measurements shown in Fig. 6 identify the metals in
solution. These measurements start at a negative potential
of VWR = - 1.2 V where they are held for a deposition
time, Tdep and terminate at 1.0 V. The curves shown in
Fig. 6 have negative going peaks characteristic of the ions
being measured except for Ni. For the case of Ni, the
electroplating literature indicates that no peak should
appear for Ni does not exist as a simple ion in solution but
is complexed. In this study our goal was to detect marker
ions in solution in order to characterize the response of the
quasi Ag RE. The ultimate goal is to use the ASV
technique to detect very low levels (ppb [Wang2000]) of
contaminates in water.

The results of this investigation are summarized in Fig. 7
where the measured results are plotted against the SHE
(Standard Hydrogen Electrode) voltages. The ASV results

from Fig. 6 are shown as the triangle data and are
compared to the Tufts [Kounaves, 2001] results shown by
the diamond data. The difference between the two data sets
is attributed to differences in the reference electrodes and
differences in the exciting signal. The Tufts results were
measured using a Ag/AgCl RE and a square wave exciting
signal; whereas, the results from this investigation used a
quasi Ag RE and a step exciting signal.

Also shown in Fig. 7 are results taken from the Evans
curves shown in Fig. 5. These results indicate a weaker
dependence on the SHE. It is noted that the Ni peak does
not appear in the ASV data but can be plotted as seen in the
figure.

These measurements have a large parameter space. For
instance, the exciting signals have a span (1.0 to —1.2 V), a
sweep rate (0.1 V/s), waveform (step versus pulse) and
deposition time. Likewise, the measured signals have a
span and gain. The measurement conditions vary
depending on the ion in solution and its concentration. In
addition the chamber environment can be altered by
changing temperature, adding oxygen or nitrogen, or by
changing pH or adding complexing agents. Finally, the
condition of the electrode surfaces, which can change with
use, also influences the measurements. All of these factors
contribute to the multi-parameter measurement space. For
these reasons, the use of computer searching techniques is
seen as essential to speeding progress during the
development cycle, facilitating the search for optimum
measurement conditions and increasing the apparent
sensitivity and confidence in the measurements.
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Figure 4a. CV CuSO4 response for PdAg WE and RE.
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Figure 4b. CV NiSO4 response for PdAg WE and RE.
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Figure 4c. CV Fe2S04 response for PdAg WE and RE.
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Figure 4d. CV ZnSO4 response for PdAAg WE and RE.
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5. SENSOR CONTROL. AND PATTERN MATCHING

The approach to detecting contaminates in water is
depicted in Figure 8. It is based on a Genetic Algorithm
(GA) that has two purposes: (1) to optimize the pattern
matching algorithm based on chemometric techniques and
the immune system and (2) to design and select the optimal
experimental parameters that control the conditions in the
sample chamber. The genetic algorithm is used because it
useful in high-dimensional search spaces and makes less
assumptions about the search space than strong
optimization method like gradient search. GAs use
concepts gleaned from Darwin's theory of evolution by
natural selection and also from the mechanisms involved in
the alteration and transfer of genetic information to
individuals in a population [Goldberg, 1989]. GA has been
used by the Evolvable Hardware group at JPL for on-chip
analog circuit optimization [Stoica, 2001], self-repaired
circuit [Keymeulen, 2000] and optimal in-situ signal
conditioning [Keymeulen, 2001].

Consider our immune system as functioning like a pattern
recognition mechanism and the genetic algorithm as an
investigation mechanism to search for impurities in water.
Our immune system protects us from an extraordinary large
variety of bacteria, viruses, and other pathogenic
organisms. It also constantly surveys the body for the

presence of abnormal cells, such as tumor cells and virally
infected cells and destroys such cells when they are found.
To perform these tasks the immune System must be capable
of distinguishing good cells and molecules, which it should
not be destroyed, from foreign cells and molecules
(antigens), which should be destroyed. From an
information-processing perspective, recognizing an almost
limitless number of foreign cells and molecules, and
distinguishing these from the good ones is a formidable
task.

SIGNAL PATTERN

=P [PROCESSING [mef MATCHING

X iV
t

GENETIC ALGORITHMS
Optimal Sensor Environment & Waveforms

Figure 8. Sensor control and pattern matching using genetic

algorithm.

IDENTIFICATION

Optimal Pattemn Matching

In this effort models will mimic the pattern recognition
process and learning that takes place in the immune system.
Models have been developed and applied to the detection
of computer viruses [Forrest, 1997} and novelty detection
in time series data [Dasgupta, 1999]. There the virus must
be detected and patterns recognized in unknown computer
environments. We will apply the same strategy, as well as
chemometric techniques, in our system to learn the
signatures of known impurities in water and be able to
differentiate from unknown impurities.

The genetic algorithm is also used to determine the optimal
parameters that control the conditions found in the sample
chamber. That is, after the initial signals are detected from
the sample chamber, the results are analyzed by looking for
matching patterns. The adaptive control then searches using
a genetic algorithm for suggestions on how to modify the
environment of the sample chamber or how to alter the
signals used to measure the sensor. For example, the
sample chamber environment can be altered by changing
the temperature, altering the PH, or adding complexing
reagents. The sensor waveform signals can be altered by
changing the signal gain or by altering the parameters that
determine the square-wave sweep parameters. Thus, the
first answer can be refined to provide a more informed
second answer. In this way we hope to be able to
discriminate between contaminates in the water and
increase the apparent sensitivity of the sensors.
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6. CONCLUSION

This paper presented CV, Corrosion and ASV results from
Etngl using four marker ions: Cu, NI, Fe, and Zn. The
results illustrate the complexity of measurement conditions
that involve: (a) exciting signal, (b) measured signal, (c)
chamber environment, and (d) ion detected. The use of
genetic algorithm is seen as essential to speeding progress
during the development cycle, facilitating the search for
optimum measurement conditions and increasing the
apparent sensitivity and confidence in the measurements.
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